基于Prometheus指标的自动扩展在Kubernetes中

image.png

首先

在使用Kubernetes进行容器编排时,其中一个主要优点是在应用程序进行水平扩展时,非常容易应对增加的负载。通常,水平Pod自动缩放器可以根据CPU和内存使用量来扩展部署,但在更复杂的情况下,我们希望在做出扩展决策之前考虑其他指标。

首先要输入Prometheus适配器。Prometheus是一种用于监控部署的工作负载和Kubernetes集群本身的标准工具。Prometheus适配器能够利用由Prometheus收集的指标,并使用它们来进行扩展决策。这些指标可以由API服务公开,并且可以立即用于Horizontal Pod Autoscaling对象。

2. 引入

2.1架构概述

使用Prometheus适配器,从Prometheus安装中获取自定义指标,并使水平Pod自动缩放器能够使用该指标来扩大或缩小Pod。 Prometheus适配器会作为一个以公开的服务形式运行在集群内部。通常,中小规模的集群只需要一个适配器的副本就足够了。然而,如果有非常大规模的集群,可以使用节点亲和性属性和Pod-AntiAffinity属性来运行多个分布在整个节点上的Prometheus适配器的副本。

image.png

2.2 前提条件的说法

    • 少なくとも3つのノードでKubernetesクラスタ環境で実行して、このチュートリアルではGKEクラスタを使用します。

 

    • 水平ポッドの自動スケーリングに関する基本的な知識。

 

    クラスタ内にデプロイされた、またはエンドポイントを使用してアクセス可能なPrometheus。

在这里,我们将使用Prometheus-Thanos高可用性部署。有关详细信息,请点击这里。

2.3 部署示例应用程序

首先,我们部署一个用于测试Prometheus指标自动缩放的示例应用程序。您可以使用以下清单进行操作。

apiVersion: v1
kind: Namespace
metadata:
  name: nginx
---
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  namespace: nginx
  name: nginx-deployment
spec:
  replicas: 1
  template:
    metadata:
      annotations:
        prometheus.io/path: "/status/format/prometheus"
        prometheus.io/scrape: "true"
        prometheus.io/port: "80"
      labels:
        app: nginx-server
    spec:
      affinity:
        podAntiAffinity:
          preferredDuringSchedulingIgnoredDuringExecution:
          - weight: 100
            podAffinityTerm:
              labelSelector:
                matchExpressions:
                - key: app
                  operator: In
                  values:
                  - nginx-server
              topologyKey: kubernetes.io/hostname
      containers:
      - name: nginx-demo
        image: vaibhavthakur/nginx-vts:1.0
        imagePullPolicy: Always
        resources:
          limits:
            cpu: 2500m
          requests:
            cpu: 2000m
        ports:
        - containerPort: 80
          name: http
---
apiVersion: v1
kind: Service
metadata:
  namespace: nginx
  name: nginx-service
spec:
  ports:
  - port: 80
    targetPort: 80
    name: http
  selector:
    app: nginx-server
  type: LoadBalancer

通过这个过程,将会创建一个名为nginx的命名空间,并在其中部署一个示例的nginx应用程序。该应用程序可以通过服务进行访问,并通过端口80公开nginx vts指标,端点为/status/format/prometheus。为了设置,我已经创建了一个映射到ExternalIP的dns条目,将其命名为nginx.gotham.com。

root$ kubectl get deploy 
NAME               READY   UP-TO-DATE   AVAILABLE   AGE
nginx-deployment   1/1     1            1           43d

root$ kubectl get pods 
NAME                                READY   STATUS    RESTARTS   AGE
nginx-deployment-65d8df7488-c578v   1/1     Running   0          9h

root$ kubectl get svc
NAME            TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)   AGE
nginx-service   ClusterIP   10.63.253.154   35.232.67.34      80/TCP    43d

root$ kubectl describe deploy nginx-deployment
Name:                   nginx-deployment
Namespace:              nginx
CreationTimestamp:      Tue, 08 Oct 2019 11:47:36 -0700
Labels:                 app=nginx-server
Annotations:            deployment.kubernetes.io/revision: 1
                        kubectl.kubernetes.io/last-applied-configuration:
                          {"apiVersion":"extensions/v1beta1","kind":"Deployment","metadata":{"annotations":{},"name":"nginx-deployment","namespace":"nginx"},"spec":...
Selector:               app=nginx-server
Replicas:               1 desired | 1 updated | 1 total | 1 available | 0 unavailable
StrategyType:           RollingUpdate
MinReadySeconds:        0
RollingUpdateStrategy:  1 max unavailable, 1 max surge
Pod Template:
  Labels:       app=nginx-server
  Annotations:  prometheus.io/path: /status/format/prometheus
                prometheus.io/port: 80
                prometheus.io/scrape: true
  Containers:
   nginx-demo:
    Image:      vaibhavthakur/nginx-vts:v1.0
    Port:       80/TCP
    Host Port:  0/TCP
    Limits:
      cpu:  250m
    Requests:
      cpu:        200m
    Environment:  <none>
    Mounts:       <none>
  Volumes:        <none>
Conditions:
  Type           Status  Reason
  ----           ------  ------
  Available      True    MinimumReplicasAvailable
OldReplicaSets:  <none>
NewReplicaSet:   nginx-deployment-65d8df7488 (1/1 replicas created)
Events:          <none>


root$ curl nginx.gotham.com
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
    body {
        width: 35em;
        margin: 0 auto;
        font-family: Tahoma, Verdana, Arial, sans-serif;
    }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.</p>

<p><em>Thank you for using nginx.</em></p>
</body>
</html>

这些是当前由应用程序公开的所有度量指标。

$ curl nginx.gotham.com/status/format/prometheus
# HELP nginx_vts_info Nginx info
# TYPE nginx_vts_info gauge
nginx_vts_info{hostname="nginx-deployment-65d8df7488-c578v",version="1.13.12"} 1
# HELP nginx_vts_start_time_seconds Nginx start time
# TYPE nginx_vts_start_time_seconds gauge
nginx_vts_start_time_seconds 1574283147.043
# HELP nginx_vts_main_connections Nginx connections
# TYPE nginx_vts_main_connections gauge
nginx_vts_main_connections{status="accepted"} 215
nginx_vts_main_connections{status="active"} 4
nginx_vts_main_connections{status="handled"} 215
nginx_vts_main_connections{status="reading"} 0
nginx_vts_main_connections{status="requests"} 15577
nginx_vts_main_connections{status="waiting"} 3
nginx_vts_main_connections{status="writing"} 1
# HELP nginx_vts_main_shm_usage_bytes Shared memory [ngx_http_vhost_traffic_status] info
# TYPE nginx_vts_main_shm_usage_bytes gauge
nginx_vts_main_shm_usage_bytes{shared="max_size"} 1048575
nginx_vts_main_shm_usage_bytes{shared="used_size"} 3510
nginx_vts_main_shm_usage_bytes{shared="used_node"} 1
# HELP nginx_vts_server_bytes_total The request/response bytes
# TYPE nginx_vts_server_bytes_total counter
# HELP nginx_vts_server_requests_total The requests counter
# TYPE nginx_vts_server_requests_total counter
# HELP nginx_vts_server_request_seconds_total The request processing time in seconds
# TYPE nginx_vts_server_request_seconds_total counter
# HELP nginx_vts_server_request_seconds The average of request processing times in seconds
# TYPE nginx_vts_server_request_seconds gauge
# HELP nginx_vts_server_request_duration_seconds The histogram of request processing time
# TYPE nginx_vts_server_request_duration_seconds histogram
# HELP nginx_vts_server_cache_total The requests cache counter
# TYPE nginx_vts_server_cache_total counter
nginx_vts_server_bytes_total{host="_",direction="in"} 3303449
nginx_vts_server_bytes_total{host="_",direction="out"} 61641572
nginx_vts_server_requests_total{host="_",code="1xx"} 0
nginx_vts_server_requests_total{host="_",code="2xx"} 15574
nginx_vts_server_requests_total{host="_",code="3xx"} 0
nginx_vts_server_requests_total{host="_",code="4xx"} 2
nginx_vts_server_requests_total{host="_",code="5xx"} 0
nginx_vts_server_requests_total{host="_",code="total"} 15576
nginx_vts_server_request_seconds_total{host="_"} 0.000
nginx_vts_server_request_seconds{host="_"} 0.000
nginx_vts_server_cache_total{host="_",status="miss"} 0
nginx_vts_server_cache_total{host="_",status="bypass"} 0
nginx_vts_server_cache_total{host="_",status="expired"} 0
nginx_vts_server_cache_total{host="_",status="stale"} 0
nginx_vts_server_cache_total{host="_",status="updating"} 0
nginx_vts_server_cache_total{host="_",status="revalidated"} 0
nginx_vts_server_cache_total{host="_",status="hit"} 0
nginx_vts_server_cache_total{host="_",status="scarce"} 0
nginx_vts_server_bytes_total{host="*",direction="in"} 3303449
nginx_vts_server_bytes_total{host="*",direction="out"} 61641572
nginx_vts_server_requests_total{host="*",code="1xx"} 0
nginx_vts_server_requests_total{host="*",code="2xx"} 15574
nginx_vts_server_requests_total{host="*",code="3xx"} 0
nginx_vts_server_requests_total{host="*",code="4xx"} 2
nginx_vts_server_requests_total{host="*",code="5xx"} 0
nginx_vts_server_requests_total{host="*",code="total"} 15576
nginx_vts_server_request_seconds_total{host="*"} 0.000
nginx_vts_server_request_seconds{host="*"} 0.000
nginx_vts_server_cache_total{host="*",status="miss"} 0
nginx_vts_server_cache_total{host="*",status="bypass"} 0
nginx_vts_server_cache_total{host="*",status="expired"} 0
nginx_vts_server_cache_total{host="*",status="stale"} 0
nginx_vts_server_cache_total{host="*",status="updating"} 0
nginx_vts_server_cache_total{host="*",status="revalidated"} 0
nginx_vts_server_cache_total{host="*",status="hit"} 0
nginx_vts_server_cache_total{host="*",status="scarce"} 0

在这些中,特别是nginx_vts_server_requests_total是一个非常有趣的指标。通过使用这个指标的值,决定是否要扩展nginx部署。

创建2.4 Prometheus适配器的SSL证书和Kubernetes机密

您可以使用以下的Makefile生成相应的Kubernetes Secret和openssl证书。

# Makefile for generating TLS certs for the Prometheus custom metrics API adapter

SHELL=bash
UNAME := $(shell uname)
PURPOSE:=metrics
SERVICE_NAME:=custom-metrics-apiserver
ALT_NAMES:="custom-metrics-apiserver.monitoring","custom-metrics-apiserver.monitoring.svc"
SECRET_FILE:=custom-metrics-api/cm-adapter-serving-certs.yaml

certs: gensecret rmcerts

.PHONY: gencerts
gencerts:
    @echo Generating TLS certs
    @docker pull cfssl/cfssl
    @mkdir -p output
    @touch output/apiserver.pem
    @touch output/apiserver-key.pem
    @openssl req -x509 -sha256 -new -nodes -days 365 -newkey rsa:2048 -keyout $(PURPOSE)-ca.key -out $(PURPOSE)-ca.crt -subj "/CN=ca"
    @echo '{"signing":{"default":{"expiry":"43800h","usages":["signing","key encipherment","'$(PURPOSE)'"]}}}' > "$(PURPOSE)-ca-config.json"
    @echo '{"CN":"'$(SERVICE_NAME)'","hosts":[$(ALT_NAMES)],"key":{"algo":"rsa","size":2048}}' | docker run  -v ${HOME}:${HOME} -v ${PWD}/metrics-ca.key:/go/src/github.com/cloudflare/cfssl/metrics-ca.key -v ${PWD}/metrics-ca.crt:/go/src/github.com/cloudflare/cfssl/metrics-ca.crt -v ${PWD}/metrics-ca-config.json:/go/src/github.com/cloudflare/cfssl/metrics-ca-config.json -i cfssl/cfssl gencert -ca=metrics-ca.crt -ca-key=metrics-ca.key -config=metrics-ca-config.json - | docker run --entrypoint=cfssljson -v ${HOME}:${HOME} -v ${PWD}/output:/go/src/github.com/cloudflare/cfssl/output -i cfssl/cfssl -bare output/apiserver

.PHONY: gensecret
gensecret: gencerts
    @echo Generating $(SECRET_FILE)
    @echo "apiVersion: v1" > $(SECRET_FILE)
    @echo "kind: Secret" >> $(SECRET_FILE)
    @echo "metadata:" >> $(SECRET_FILE)
    @echo " name: cm-adapter-serving-certs" >> $(SECRET_FILE)
    @echo " namespace: monitoring" >> $(SECRET_FILE)
    @echo "data:" >> $(SECRET_FILE)
ifeq ($(UNAME), Darwin)
    @echo " serving.crt: $$(cat output/apiserver.pem | base64)" >> $(SECRET_FILE)
    @echo " serving.key: $$(cat output/apiserver-key.pem | base64)" >> $(SECRET_FILE)
endif
ifeq ($(UNAME), Linux)
    @echo " serving.crt: $$(cat output/apiserver.pem | base64 -w 0)" >> $(SECRET_FILE)
    @echo " serving.key: $$(cat output/apiserver-key.pem | base64 -w 0)" >> $(SECRET_FILE)
endif

.PHONY: rmcerts
rmcerts:
    @rm -f apiserver-key.pem apiserver.csr apiserver.pem
    @rm -f metrics-ca-config.json metrics-ca.crt metrics-ca.key

.PHONY: deploy
deploy:
    kubectl create -f ./custom-metrics-api

一旦创建了make文件,请执行以下命令。

make certs

另外,将创建与SSL证书对应的Kubernetes机密。在创建机密之前,请确保监视命名空间存在。这个机密将被用于后续部署的Prometheus适配器。

创建2.5 Prometheus适配器ConfigMap。

使用以下的宣言,创建Prometheus适配器配置映射。

apiVersion: v1
kind: ConfigMap
metadata:
  name: adapter-config
  namespace: monitoring
data:
  config.yaml: |
    rules:
    - seriesQuery: 'nginx_vts_server_requests_total'
      resources:
        overrides:
          kubernetes_namespace:
            resource: namespace
          kubernetes_pod_name:
            resource: pod
      name:
        matches: "^(.*)_total"
        as: "${1}_per_second"
      metricsQuery: (sum(rate(<<.Series>>{<<.LabelMatchers>>}[1m])) by (<<.GroupBy>>))

这个配置图只指定了一个度量标准。然而,您可以随时添加其他度量标准。您可以参考此链接来进一步添加度量标准。我们强烈建议仅获取水平Pod自动缩放器所需的度量标准,这将有助于调试。此外,这些插件会生成非常详细的日志,并被日志后端所捕获。如果获取不必要的指标,将会增加服务的负载,同时不必要的日志也会被发送到日志后端。有关配置图的详细信息,请查看这里。

这个构成地图只指定一个测量标准。尽管如此,您随时可以添加测量标准。您可以参考此链接来进一步添加测量标准。强烈推荐仅提取水平 Pod 自动缩放器所需的测量标准。对于调试会有帮助。此外,这些附加组件会生成非常详细的日志,并且由日志后端收集。如果获取不需要的指标,则服务将变得负载较重,同时还会发送不必要的日志到日志后端。请参阅设置地图的详细信息。

创建2.6 Prometheus适配器部署。

请使用以下清单部署Prometheus适配器。

apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: custom-metrics-apiserver
  name: custom-metrics-apiserver
  namespace: monitoring
spec:
  replicas: 1
  selector:
    matchLabels:
      app: custom-metrics-apiserver
  template:
    metadata:
      labels:
        app: custom-metrics-apiserver
      name: custom-metrics-apiserver
    spec:
      serviceAccountName: monitoring
      containers:
      - name: custom-metrics-apiserver
        image: quay.io/coreos/k8s-prometheus-adapter-amd64:v0.4.1
        args:
        - /adapter
        - --secure-port=6443
        - --tls-cert-file=/var/run/serving-cert/serving.crt
        - --tls-private-key-file=/var/run/serving-cert/serving.key
        - --logtostderr=true
        - --prometheus-url=http://thanos-querier.monitoring:9090/
        - --metrics-relist-interval=30s
        - --v=10
        - --config=/etc/adapter/config.yaml
        ports:
        - containerPort: 6443
        volumeMounts:
        - mountPath: /var/run/serving-cert
          name: volume-serving-cert
          readOnly: true
        - mountPath: /etc/adapter/
          name: config
          readOnly: true
      volumes:
      - name: volume-serving-cert
        secret:
          secretName: cm-adapter-serving-certs
      - name: config
        configMap:
          name: adapter-config

通过这样做,将创建一个部署,生成Prometheus适配器pod并从Prometheus中拉取度量。请注意设置参数 –prometheus-url = http://thanos-querier.monitoring:9090/。这是因为在与Prometheus适配器相同的Kubernetes集群中的监控命名空间内部署了由Thanos支持的Prometheus集群。您可以通过更改此参数来指向Prometheus部署。

如果您注意到这个容器的日志,就会发现它正在获取在设置文件中定义的指标。

I1122 00:26:53.228394       1 api.go:74] GET http://thanos-querier.monitoring:9090/api/v1/series?match%5B%5D=nginx_vts_server_requests_total&start=1574381213.217 200 OK
I1122 00:26:53.234234       1 api.go:93] Response Body: {"status":"success","data":[{"__name__":"nginx_vts_server_requests_
total","app":"nginx-server","cluster":"prometheus-ha","code":"1xx","host":"*","instance":"10.60.64.39:80","job":"kubernetes
-pods","kubernetes_namespace":"nginx","kubernetes_pod_name":"nginx-deployment-65d8df7488-sbp95","pod_template_hash":"65d8df
7488"},{"__name__":"nginx_vts_server_requests_total","app":"nginx-server","cluster":"prometheus-ha","code":"1xx","host":"*"
,"instance":"10.60.64.8:80","job":"kubernetes-pods","kubernetes_namespace":"nginx","kubernetes_pod_name":"nginx-deployment-
65d8df7488-mwzxg","pod_template_hash":"65d8df7488"},{"__name__":"nginx_vts_server_requests_total","app":"nginx-server",
"cluster":"prometheus-ha","code":"1xx","host":"_","instance":"10.60.64.39:80","job":"kubernetes-pods","kubernetes_namespace
":"nginx","kubernetes_pod_name":"nginx-deployment-65d8df7488-sbp95","pod_template_hash":"65d8df7488"},{"__name__":"nginx_
vts_server_requests_total","app":"nginx-server","cluster":"prometheus-ha","code":"1xx","host":"_","instance":"10.60.64.8:80
","job":"kubernetes-pods","kubernetes_namespace":"nginx","kubernetes_pod_name":"nginx-deployment-65d8df7488-mwzxg",
"pod_template_hash":"65d8df7488"},{"__name__":"nginx_vts_server_requests_total","app":"nginx-server","cluster":"prometheus-
ha","code":"2xx","host":"*","instance":"10.60.64.39:80","job":"kubernetes-pods","kubernetes_namespace":"nginx","kubernetes_
pod_name":"nginx-deployment-65d8df7488-sbp95","pod_template_hash":"65d8df7488"},{"__name__":"nginx_vts_server_requests_
total","app":"nginx-server","cluster":"prometheus-ha","code":"2xx","host":"*","instance":"10.60.64.8:80","job":"kubernetes-
pods","kubernetes_namespace":"nginx","kubernetes_pod_name":"nginx-deployment-65d8df7488-mwzxg","pod_template_hash":
"65d8df7488"},{"__name__":"nginx_vts_server_requests_total","app":"nginx-server","cluster":"prometheus-ha","code":"2xx",
"host":"_","instance":"10.60.64.39:80","job":"kubernetes-pods","kubernetes_namespace":"nginx","kubernetes_pod_name":
"nginx-deployment-65d8df7488-sbp95","pod_template_hash":"65d8df7488"},{"__name__":"nginx_vts_server_requests_total",
"app":"nginx-server","cluster":"prometheus-ha","code":"2xx","host":"_","instance":"10.60.64.8:80","job":"kubernetes-pods"
,"kubernetes_namespace":"nginx","kubernetes_pod_name":"nginx-deployment-65d8df7488-mwzxg","pod_template_hash":
"65d8df7488"},{"__name__":"nginx_vts_server_requests_total","app":"nginx-server","cluster":"prometheus-ha","code":"3xx",
"host":"*","instance":"10.60.64.39:80","job":"kubernetes-pods","kubernetes_namespace":"nginx","kubernetes_pod_name":
"nginx-deployment-65d8df7488-sbp95","pod_template_hash":"65d8df7488"},{"__name__":"nginx_vts_server_requests_total",
"app":"nginx-server","cluster":"prometheus-ha","code":"3xx","host":"*","instance":"10.60.64.8:80","job":"kubernetes-pods"
,"kubernetes_namespace":"nginx","kubernetes_pod_name":"nginx-deployment-65d8df7488-mwzxg","pod_template_hash":
"65d8df7488"},{"__name__":"nginx_vts_server_requests_total","app":"nginx-server","cluster":"prometheus-ha","code":"3xx",
"host":"_","instance":"10.60.64.39:80","job":"kubernetes-pods","kubernetes_namespace":"nginx","kubernetes_pod_name":
"nginx-deployment-65d8df7488-sbp95","pod_template_hash":"65d8df7488"},{"__name__":"nginx_vts_server_requests_total",
"app":"nginx-server","cluster":"prometheus-ha","code":"3xx","host":"_","instance":"10.60.64.8:80","job":"kubernetes-pods"
,"kubernetes_namespace":"nginx","kubernetes_pod_name":"nginx-deployment-65d8df7488-mwzxg","pod_template_hash":
"65d8df7488"},{"__name__":"nginx_vts_server_requests_total","app":"nginx-server","cluster":"prometheus-ha","code":"4xx",
"host":"*","instance":"10.60.64.39:80","job":"kubernetes-pods","kubernetes_namespace":"nginx","kubernetes_pod_name":
"nginx-deployment-65d8df7488-sbp95","pod_template_hash":"65d8df7488"},{"__name__":"nginx_vts_server_requests_total",
"app":"nginx-server","cluster":"prometheus-ha","code":"4xx","host":"*","instance":"10.60.64.8:80","job":"kubernetes-pods"
,"kubernetes_namespace":"nginx","kubernetes_pod_name":"nginx-deployment-65d8df7488-mwzxg","pod_template_hash":
"65d8df7488"},{"__name__":"nginx_vts_server_requests_total","app":"nginx-server","cluster":"prometheus-ha","code":"4xx",
"host":"_","instance":"10.60.64.39:80","job":"kubernetes-pods","kubernetes_namespace":"nginx","kubernetes_pod_name":
"nginx-deployment-65d8df7488-sbp95","pod_template_hash":"65d8df7488"},{"__name__":"nginx_vts_server_requests_total",
"app":"nginx-server","cluster":"prometheus-ha","code":"4xx","host":"_","instance":"10.60.64.8:80","job":"kubernetes-pods"
,"kubernetes_namespace":"nginx","kubernetes_pod_name":"nginx-deployment-65d8df7488-mwzxg","pod_template_hash":
"65d8df7488"},{"__name__":"nginx_vts_server_requests_total","app":"nginx-server","cluster":"prometheus-ha","code":"5xx",
"host":"*","instance":"10.60.64.39:80","job":"kubernetes-pods","kubernetes_namespace":"nginx","kubernetes_pod_name":
"nginx-deployment-65d8df7488-sbp95","pod_template_hash":"65d8df7488"},{"__name__":"nginx_vts_server_requests_total",
"app":"nginx-server","cluster":"prometheus-ha","code":"5xx","host":"*","instance":"10.60.64.8:80","job":"kubernetes-pods"
,"kubernetes_namespace":"nginx","kubernetes_pod_name":"nginx-deployment-65d8df7488-mwzxg","pod_template_hash":
"65d8df7488"},{"__name__":"nginx_vts_server_requests_total","app":"nginx-server","cluster":"prometheus-ha","code":"5xx",
"host":"_","instance":"10.60.64.39:80","job":"kubernetes-pods","kubernetes_namespace":"nginx","kubernetes_pod_name":
"nginx-deployment-65d8df7488-sbp95","pod_template_hash":"65d8df7488"},{"__name__":"nginx_vts_server_requests_total",
"app":"nginx-server","cluster":"prometheus-ha","code":"5xx","host":"_","instance":"10.60.64.8:80","job":"kubernetes-pods"
,"kubernetes_namespace":"nginx","kubernetes_pod_name":"nginx-deployment-65d8df7488-mwzxg","pod_template_hash":
"65d8df7488"},{"__name__":"nginx_vts_server_requests_total","app":"nginx-server","cluster":"prometheus-ha","code":
"total","host":"*","instance":"10.60.64.39:80","job":"kubernetes-pods","kubernetes_namespace":"nginx","kubernetes_pod_
name":"nginx-deployment-65d8df7488-sbp95","pod_template_hash":"65d8df7488"},{"__name__":"nginx_vts_server_requests_total"
,"app":"nginx-server","cluster":"prometheus-ha","code":"total","host":"*","instance":"10.60.64.8:80","job":
"kubernetes-pods","kubernetes_namespace":"nginx","kubernetes_pod_name":"nginx-deployment-65d8df7488-mwzxg",
"pod_template_hash":"65d8df7488"},{"__name__":"nginx_vts_server_requests_total","app":"nginx-server","cluster":
"prometheus-ha","code":"total","host":"_","instance":"10.60.64.39:80","job":"kubernetes-pods","kubernetes_namespace":
"nginx","kubernetes_pod_name":"nginx-deployment-65d8df7488-sbp95","pod_template_hash":"65d8df7488"},{"__name__":
"nginx_vts_server_requests_total","app":"nginx-server","cluster":"prometheus-ha","code":"total","host":"_","instance":
"10.60.64.8:80","job":"kubernetes-pods","kubernetes_namespace":"nginx","kubernetes_pod_name":"nginx-deployment-
65d8df7488-mwzxg","pod_template_hash":"65d8df7488"}]}

用于创建API服务的以下清单将使得可以从Kubernetes API访问Prometheus适配器,并能够通过水平Pod自动缩放器获取指标。

apiVersion: v1
kind: Service
metadata:
  name: custom-metrics-apiserver
  namespace: monitoring
spec:
  ports:
  - port: 443
    targetPort: 6443
  selector:
    app: custom-metrics-apiserver
---
apiVersion: apiregistration.k8s.io/v1beta1
kind: APIService
metadata:
  name: v1beta1.custom.metrics.k8s.io
spec:
  service:
    name: custom-metrics-apiserver
    namespace: monitoring
  group: custom.metrics.k8s.io
  version: v1beta1
  insecureSkipTLSVerify: true
  groupPriorityMinimum: 100
  versionPriority: 100

3. 安装测试

让我们查看所有可用的自定义指标。

root$ kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1" | jq .

{
  "kind": "APIResourceList",
  "apiVersion": "v1",
  "groupVersion": "custom.metrics.k8s.io/v1beta1",
  "resources": [
    {
      "name": "pods/nginx_vts_server_requests_per_second",
      "singularName": "",
      "namespaced": true,
      "kind": "MetricValueList",
      "verbs": [
        "get"
      ]
    },
    {
      "name": "namespaces/nginx_vts_server_requests_per_second",
      "singularName": "",
      "namespaced": false,
      "kind": "MetricValueList",
      "verbs": [
        "get"
      ]
    }
  ]
}

可以看到nginx_vts_server_requests_per_second指标是可用的。

接下来,我们来查看一下这个指标的当前数值。

root$ kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/nginx/pods/*/nginx_vts_server_requests_per_second" | jq .

{
  "kind": "MetricValueList",
  "apiVersion": "custom.metrics.k8s.io/v1beta1",
  "metadata": {
    "selfLink": "/apis/custom.metrics.k8s.io/v1beta1/namespaces/nginx/pods/%2A/nginx_vts_server_requests_per_second"
  },
  "items": [
    {
      "describedObject": {
        "kind": "Pod",
        "namespace": "nginx",
        "name": "nginx-deployment-65d8df7488-v575j",
        "apiVersion": "/v1"
      },
      "metricName": "nginx_vts_server_requests_per_second",
      "timestamp": "2019-11-19T18:38:21Z",
      "value": "1236m"
    }
  ]
}

使用以下清单可以创建一个使用这些指标的HPA。

apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
metadata:
  name: nginx-custom-hpa
  namespace: nginx
spec:
  scaleTargetRef:
    apiVersion: extensions/v1beta1
    kind: Deployment
    name: nginx-deployment
  minReplicas: 2
  maxReplicas: 10
  metrics:
  - type: Pods
    pods:
      metricName: nginx_vts_server_requests_per_second
      targetAverageValue: 4000m

当您应用此清单时,您可以确认HPA的当前状态如下。

root$ kubectl describe hpa
Name:               nginx-custom-hpa
Namespace:          nginx
Labels:             <none>
Annotations:        autoscaling.alpha.kubernetes.io/metrics:
                      [{"type":"Pods","pods":{"metricName":"nginx_vts_server_requests_per_second","targetAverageValue":"4"}}]
                    kubectl.kubernetes.io/last-applied-configuration:
                      {"apiVersion":"autoscaling/v2beta1","kind":"HorizontalPodAutoscaler","metadata":{"annotations":{},"name":"nginx-custom-hpa","namespace":"n...
CreationTimestamp:  Thu, 21 Nov 2019 11:11:05 -0800
Reference:          Deployment/nginx-deployment
Min replicas:       2
Max replicas:       10
Deployment pods:    0 current / 0 desired
Events:             <none>

那么,让我们给服务增加一些负载吧。我们可以使用一个叫做vegeta的工具来实现这个目的。

在另一个终端上,执行以下命令。

echo "GET http://nginx.gotham.com/" | vegeta attack -rate=5 -duration=0 | vegeta report

同时监控nginx的Pod和水平Pod自动缩放器,会得到以下结果。

root$ kubectl get -w pods
NAME                                READY   STATUS    RESTARTS   AGE
nginx-deployment-65d8df7488-mwzxg   1/1     Running   0          9h
nginx-deployment-65d8df7488-sbp95   1/1     Running   0          4m9s
NAME                                AGE
nginx-deployment-65d8df7488-pwjzm   0s
nginx-deployment-65d8df7488-pwjzm   0s
nginx-deployment-65d8df7488-pwjzm   0s
nginx-deployment-65d8df7488-pwjzm   2s
nginx-deployment-65d8df7488-pwjzm   4s
nginx-deployment-65d8df7488-jvbvp   0s
nginx-deployment-65d8df7488-jvbvp   0s
nginx-deployment-65d8df7488-jvbvp   1s
nginx-deployment-65d8df7488-jvbvp   4s
nginx-deployment-65d8df7488-jvbvp   7s
nginx-deployment-65d8df7488-skjkm   0s
nginx-deployment-65d8df7488-skjkm   0s
nginx-deployment-65d8df7488-jh5vw   0s
nginx-deployment-65d8df7488-skjkm   0s
nginx-deployment-65d8df7488-jh5vw   0s
nginx-deployment-65d8df7488-jh5vw   1s
nginx-deployment-65d8df7488-skjkm   2s
nginx-deployment-65d8df7488-jh5vw   2s
nginx-deployment-65d8df7488-skjkm   3s
nginx-deployment-65d8df7488-jh5vw   4s

root$ kubectl get hpa
NAME               REFERENCE                     TARGETS   MINPODS   MAXPODS   REPLICAS   AGE
nginx-custom-hpa   Deployment/nginx-deployment   5223m/4   2         10        3          5m5s

我们清楚地看到水平Pod自动缩放器扩展了Pod以满足需求。中断vegeta命令会显示vegeta报告。这清楚地表明所有请求都已被应用程序处理完毕。

root$ echo "GET http://nginx.gotham.com/" | vegeta attack -rate=5 -duration=0 | vegeta report
^CRequests      [total, rate, throughput]  224, 5.02, 5.02
Duration      [total, attack, wait]      44.663806863s, 44.601823883s, 61.98298ms
Latencies     [mean, 50, 95, 99, max]    63.3879ms, 60.867241ms, 79.414139ms, 111.981619ms, 229.310088ms
Bytes In      [total, mean]              137088, 612.00
Bytes Out     [total, mean]              0, 0.00
Success       [ratio]                    100.00%
Status Codes  [code:count]               200:224  
Error Set:

4. 总结

这个设置使用 Prometheus 适配器,解释了根据一些自定义指标来自动扩展部署的方法。为了简单起见,从 Prometheus 服务器获取的指标只有一个。然而,通过扩展适配器配置映射,您可以获取一部分或全部可用的指标,并将它们用于自动扩展。

如果Prometheus安装在Kubernetes集群外部,只需确保集群可以访问查询端点,然后在适配器部署清单中进行更新。可以想象出复杂的场景,可以获取多个指标并组合进行扩展决策。

如果你对使用Prometheus感兴趣,但担心配置和管理会消耗太多资源,你可以预约一次演示,并咨询Hosted Prometheus如何适配监控环境。另外,你也可以直接访问免费试用,立即进行确认,务必进行查看!

这篇文章是由客座博客Vaibhav Thakur撰写的。如果你喜欢这篇文章,请在LinkedIn上查看更多关于他的详细信息。

那么,我们下一篇文章再见!

广告
将在 10 秒后关闭
bannerAds