Data Cleaning Methods in Python
Python中常用的数据清洗方法包括:
- Handling missing values: Use dropna() to remove rows or columns containing missing values, and use fillna() to fill in missing values.
- Duplicate Value Handling: Use the duplicate() method to find duplicate values and use the drop_duplicates() method to remove duplicate values.
- Convert the data format: Use astype() to change the data type to a specified format, and use str.strip() to remove spaces from text data.
- Outlier handling: Detect outliers using methods like describe() and boxplot(), and use conditional filtering or replacement methods to address them.
- Text data processing involves using regular expressions or string manipulation methods to clean, extract, replace, and perform other operations on text data.
- Standardization of data: Normalize the data using methods such as MinMaxScaler or StandardScaler.
- Data normalization: Normalize the data using normalization methods such as MinMaxScaler.
- Removing duplicate data: The drop_duplicates() method can be used to eliminate duplicated data within a dataset.
These are some commonly used data cleaning methods, you can choose the appropriate method for data cleaning based on the actual situation.