Hadoop Serialization Guide
Hadoop can serialize data using the serialization interface in Java. The specific steps are as follows:
- Create a class that implements the Writable interface, which represents a data object that needs to be serialized. The Writable interface is provided by Hadoop for serialization and deserialization.
public class MyData implements Writable {
private String name;
private int age;
// 实现write()方法,将对象序列化为字节流
@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(name);
out.writeInt(age);
}
// 实现readFields()方法,从字节流中反序列化对象
@Override
public void readFields(DataInput in) throws IOException {
name = in.readUTF();
age = in.readInt();
}
// 其他getter和setter方法
}
- Utilize the custom data type in a MapReduce program, and perform serialization and deserialization on it.
public static class MyMapper extends Mapper<LongWritable, Text, Text, MyData> {
private MyData myData = new MyData();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 对myData对象进行赋值
myData.setName("Alice");
myData.setAge(30);
// 将myData对象写入context中
context.write(new Text("key"), myData);
}
}
public static class MyReducer extends Reducer<Text, MyData, Text, Text> {
@Override
protected void reduce(Text key, Iterable<MyData> values, Context context) throws IOException, InterruptedException {
// 从values中读取myData对象并进行操作
for (MyData myData : values) {
// 输出myData对象的内容
context.write(new Text(myData.getName()), new Text(String.valueOf(myData.getAge())));
}
}
}
- In the main function, configure the serialization class for the custom data type so Hadoop can properly serialize and deserialize data objects.
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(MyData.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
By following the above steps, it is possible to serialize and deserialize custom data types in Hadoop.