PyTorch Hyperparameter Optimization Guide
In PyTorch, you can optimize model hyperparameters using either PyTorch Lightning or the torch.optim module.
- Optimize hyperparameters using PyTorch Lightning.
PyTorch Lightning offers a convenient interface for hyperparameter optimization, where you can use the Trainer class and its built-in scheduler to adjust hyperparameters. Initially, you need to define a LightningModule class and then pass in the relevant parameters in the Trainer for optimization. For example:
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
# Define your LightningModule
class MyLightningModule(pl.LightningModule):
def __init__(self, **hparams):
super().__init__()
# Define your model architecture
def training_step(self, batch, batch_idx):
pass
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=self.hparams['learning_rate'])
# Define hyperparameters and logger
hparams = {
'learning_rate': 0.001,
# other hyperparameters
}
logger = TensorBoardLogger(save_dir="logs", name="experiment_name")
# Instantiate Trainer
trainer = Trainer(logger=logger, max_epochs=10, gpus=1)
# Train the model
model = MyLightningModule(**hparams)
trainer.fit(model, train_dataloader, val_dataloader)
- Optimize hyperparameters using the torch.optim module.
If PyTorch Lightning is not used, one can directly utilize the torch.optim module to define optimizers and adjust hyperparameters. For example:
import torch
import torch.optim as optim
# Define your model and optimizer
model = MyModel()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Define hyperparameters
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)
# Train the model
for epoch in range(num_epochs):
# Train the model
for batch in dataloader:
optimizer.zero_grad()
output = model(batch)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# Adjust learning rate
lr_scheduler.step()
These are two methods for optimizing model hyperparameters in PyTorch. You can choose the appropriate method for hyperparameter tuning based on your actual needs.