How to clean data using Python?

Data cleaning is an important step in data preprocessing, which can be done using the pandas library in Python. Here is a simple example of data cleaning.

  1. Import the necessary libraries.
import pandas as pd
  1. Accessing data:
data = pd.read_csv('data.csv')
  1. View the first few rows of data:
print(data.head())
  1. Check for missing values in the data.
print(data.isnull().sum())
  1. Dealing with missing values can involve either deleting them or filling them in.

Remove missing values.

data.dropna(inplace=True)

Fill in missing values.

data.fillna(data.mean(), inplace=True)
  1. Check for duplicates and remove them.
data.drop_duplicates(inplace=True)
  1. Type conversion:
data['column'] = data['column'].astype(int)
  1. Remove outliers from the data.
data = data[(data['column'] >= min_value) & (data['column'] <= max_value)]
  1. Save the cleaned data.
data.to_csv('cleaned_data.csv', index=False)

By following the above steps, Python can be used to clean data and make it more accurate and reliable.

bannerAds