How to conduct panel data analysis in the R language?
Panel data analysis in R can typically be done using the plm package. This package offers various estimation methods for panel data models, including fixed effects models, random effects models, and mixed effects models.
Here is a sample code for a simple panel data analysis.
# 加载plm包
library(plm)
# 读取面板数据
data <- read.csv("panel_data.csv")
# 创建面板数据对象
pdata <- pdata.frame(data, index=c("id", "time"))
# 估计固定效应模型
fixed_model <- plm(y ~ x1 + x2, data=pdata, model="within")
# 检验固定效应模型的显著性
summary(fixed_model)
# 估计随机效应模型
random_model <- plm(y ~ x1 + x2, data=pdata, model="random")
# 检验随机效应模型的显著性
summary(random_model)
In this example, we first load the plm package, then read panel data and create a panel data object. Next, we estimate fixed effect and random effect models and check the model results using the summary function. Following these steps, you can perform panel data analysis and obtain the corresponding results.