PaddlePaddle Data Augmentation Guide
Various data augmentation methods can be utilized in the PaddlePaddle framework through the paddle.vision.transforms module. Here are some commonly used data augmentation methods:
- Flip the image horizontally at random.
transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
# 其他数据增强方法
])
- Randomly flip the input vertically.
transform = transforms.Compose([
transforms.RandomVerticalFlip(),
# 其他数据增强方法
])
- Randomly rotating
transform = transforms.Compose([
transforms.RandomRotation(degrees=45),
# 其他数据增强方法
])
- Randomly resizing and cropping in various sizes
transform = transforms.Compose([
transforms.RandomResizedCrop(size=(224, 224)),
# 其他数据增强方法
])
- Convert to tensor
transform = transforms.Compose([
transforms.ToTensor(),
# 其他数据增强方法
])
Combining these data augmentation methods together can create a data augmentation transform, which can then be used to enhance images during data loading. For example:
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
train_loader = paddle.io.DataLoader(train_dataset, batch_size=32, shuffle=True)