How can image stitching be achieved in OpenCV?
To achieve image stitching, you can use the functions in the OpenCV library. Here is a basic set of steps for image stitching:
- load an image using cv2.imread()
import cv2
# 加载图像
image1 = cv2.imread('image1.jpg')
image2 = cv2.imread('image2.jpg')
# 存储图像
images = [image1, image2]
- Create a SIFT object in OpenCV version 2.
- Create a SURF feature detector using OpenCV.
- Identify and process()
# 创建特征检测器
sift = cv2.xfeatures2d.SIFT_create()
# 检测特征点和描述符
keypoints1, descriptors1 = sift.detectAndCompute(image1, None)
keypoints2, descriptors2 = sift.detectAndCompute(image2, None)
- a Flann-based Matcher in OpenCV version 2
- BFMatcher function in OpenCV version 2.
- check if there is a match
# 创建匹配器
matcher = cv2.BFMatcher()
# 特征匹配
matches = matcher.match(descriptors1, descriptors2)
- Choose good matching points: Based on the matching results, select some good matching points, which can be filtered using algorithms like RANSAC.
# 筛选匹配点
good_matches = []
for match in matches:
if match.distance < 0.7 * min_distance:
good_matches.append(match)
- Locate the homography with cv2.
# 计算仿射变换矩阵
src_points = np.float32([keypoints1[match.queryIdx].pt for match in good_matches]).reshape(-1, 1, 2)
dst_points = np.float32([keypoints2[match.trainIdx].pt for match in good_matches]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_points, dst_points, cv2.RANSAC, 5.0)
- The function cv2.warpPerspective()
# 应用仿射变换
result = cv2.warpPerspective(image2, M, (image1.shape[1] + image2.shape[1], image1.shape[0]))
result[0:image1.shape[0], 0:image1.shape[1]] = image1
- displayImage()
# 显示结果
cv2.imshow('Result', result)
cv2.waitKey(0)
cv2.destroyAllWindows()
This is a basic implementation process of image stitching. The algorithm can be adjusted and optimized according to actual circumstances to achieve better stitching results.